Chapter 2 Examining and Summarizing Data

Sources for this chapter:

2.1 Introduction

Examining and summarizing data involves visualizations (e.g., graphs and charts) and tables. For visualization, the most popular package in R is th ggplot2 package.

Data for this chapter:

  • The airlinesat data is used from the MKT4320BGSU course package. Load the package and use the data() function to load the data.

    # Load course package
    library(MKT4320BGSU)
    # Load data
    data(airlinesat)

2.2 Visualizations

2.2.1 Package ggplot2

2.2.1.1 Introduction

  • First, make sure the ggplot2 library is loaded:
    library(ggplot2)
  • ggplot2 is based on the basic idea that for a graph, we need three things:
    1. Data: ggplot2 is designed to work with data frames
    2. Coordinate system: what are the x and y variables
    3. Geoms: how is the data being represented (e.g., points, lines, etc.)
    AND that the plot can be enhance by adding more layers, using +
  • When ggplot is used in the console or from a script, the plot appears in the Viewer tab of the lower-right corner

Video Tutorial: Data Visualizations using ggplot (Introduction)

2.2.1.2 Usage

  • A plot starts with the ggplot() function, which requires two arguments:
    1. Source of the data, which can be piped in (i.e., %>%)
    2. The mapping of the data components
      • This argument is an aesthetic function, aes(), which maps the variable(s) to the coordinate system
    If the ggplot() function alone is used, the output is simply the coordinate system, but with nothing plotted
    • Because a geom hasn’t been requested
    ggplot(airlinesat,    # Use data frame 'airlinesat'
           aes(x=country, y=nflights))   # Map 'country' on x and 'nflights' on y
    Call to ggplot() without a geom

    Figure 2.1: Call to ggplot() without a geom

  • Other parts of the plot are adding in layers, using +
    • A good analogy is building a house:
      The call to ggplot() is the foundation, but the structure is built one layer at a time
    • Example: Request a column chart for a discrete x and a continuous y
    ggplot(airlinesat,    # Use data frame 'airlinesat'
           aes(x=country, y=nflights)) +  # Map 'country' on x and 'nflights' on y
       geom_col()   # Ask for column chart as the geom
    ggplot() + geom_col()

    Figure 2.2: ggplot() + geom_col()

    • NOTE: Each geom has a default statistic to plot
      • In this case, it is summing the nflights variable by country
      • We can use dplyr and ggplot2 together to get a different value, such as the mean
    # Use airlinesat data
    airlinesat %>%    
       # Group data by 'country'
       group_by(country) %>%
       # Create summary statistic
       summarise(mean_nflights=mean(nflights, na.rm=TRUE)) %>%
       # Pass this results to ggplot and start the plot
       ggplot(aes(x=country, y=mean_nflights)) +   # Note dataset was `piped`
         # Request column geom
         geom_col()
    Using dplyr before ggplot to get mean values

    Figure 2.3: Using dplyr before ggplot to get mean values

Using ggplot() can get much more advanced. As the tutorial progresses, many examples of additional layers to a ggplot() will be shown.

Video Tutorial: Data Visualizations using ggplot (Basic Usage) Video Tutorial: Data Visualizations using ggplot (Linking with dplyr)

2.2.2 Bar and Column Charts

In ggplot, bar charts, geom_bar(), are used for plotting a single discrete variable, while column charts, geom_col(), are used for plotting a discrete variable on the x axis and a continuous variable on the y axis.

2.2.2.1 Bar Charts

  • The standard bar chart provides a count of observations of each category of discrete variable x

    airlinesat %>%
       ggplot(aes(x=gender)) +
         geom_bar()
    Standard bar chart

    Figure 2.4: Standard bar chart

Video Tutorial: Bar Charts with ggplot::geom_bar (Part 1)

  • To get percentages of each category, we need to summarize the data and calculate the proportion for each category

    airlinesat %>%
       group_by(gender) %>%  # Group data by gender
       summarise(n=n()) %>%  # Create variable with count of each gender
       mutate(prop=n/sum(n)) %>%  # Create variable with proportion by gender
       ggplot(aes(x=gender,  # Variable for the x-axis
                  y=prop)) + # Use 'prop' instead of default counts for y-axis
         geom_bar(stat="identity")  # Use the value of y as-is
    Bar chart with proportions

    Figure 2.5: Bar chart with proportions

Video Tutorial: Bar Charts with ggplot::geom_bar (Part 2)

  • To make the chart “pretty”, we change the color of each bar we can add layers for axis labels, use the scales package to have the y-axis show percent, add labels for the bars etc.

    airlinesat %>%
       group_by(gender) %>%  # Group data by gender
       summarise(n=n()) %>%  # Create variable with count of each gender
       mutate(prop=n/sum(n)) %>%  # Create variable with proportion by gender
       ggplot(aes(x=gender,  # Variable for the x-axis
              y=prop,   # Use 'prop' instead of default counts for y-axis
              fill=gender)) + # Use different color for each bar
      geom_bar(show.legend=FALSE, # Hide legend
               stat="identity", ) +  # Use the value of y as-is
      scale_y_continuous(labels=scales::label_percent()) + # y-axis labels %
      labs(x="Gender", y="Percent") +  # Label x- and y-axes
      geom_text(aes(label=sprintf("%.1f%%", prop*100)), # Format label number
             vjust=.95, # Vertically adjust the labels
             fontface="bold",  # Bold typeface
             color="white") # Text color
    Prettier bar chart

    Figure 2.6: Prettier bar chart

Video Tutorial: Bar Charts with ggplot::geom_bar (Part 3)

2.2.2.1.1 Bar Chart Variations
2.2.2.1.1.1 Stacked Bar Chart

Used to show one discrete variable by another discrete variable, such as data you would see in a cross-tab

  • The x= variable specifies the axis, while the fill= variable stacks the bars by the other variable
  • As with other bar charts, the default is to count observations, so some manipulation is needed to get “100% stacked bar charts”
    airlinesat %>%
    group_by(gender, flight_type) %>%  # Group data by two discrete variables
    summarise(n=n()) %>%  # Count observations for each combination
    mutate(prop=n/sum(n)) %>%  # Calculate prop WITHIN first grouping variable
    ggplot(aes(x=gender, y=prop, fill=flight_type)) +
      geom_bar(position="fill",  # Stack the bars
               stat="identity") + # Use the value of y as-is
      scale_y_continuous(labels=scales::label_percent()) + # y-axis labels %
      labs(x="Gender", y="Percent",  # Label x- and y-axes 
           fill="Flight Type") +  # Label legend
      geom_text(aes(label=sprintf("%.1f%%", prop*100)), # Format data label
             position=position_stack(vjust=.95), # Adjust the labels
             fontface="bold",  # Bold typeface
             color="white") # Text color
Stacked bar chart

Figure 2.7: Stacked bar chart

2.2.2.1.1.2 Side-by-Side Bar Chart

Also used to shows one discrete variable by another discrete variable

  • Again, default is to count observations, so some manipulation required to get percentages
    • Percentages can be within a group (like in 100% stacked, see Figure 2.8) or percent of overall total (see Figure 2.9)
    # NOTE: The code for this chart is nearly identical to the previous figure
    #       ONLY the changes have been commented on below
    airlinesat %>%
    group_by(gender, flight_type) %>%  
    summarise(n=n()) %>%  
     mutate(prop=n/sum(n)) %>%  
    ggplot(aes(x=gender, y=prop, fill=flight_type)) +
      # NOTE: Use position="dodge" to make bars side-by-side
      geom_bar(position="dodge",  
               stat="identity") + 
      scale_y_continuous(labels=scales::label_percent()) + 
      labs(x="Gender", y="Percent",   
           fill="Flight Type") +  
      # NOTE: Use position=position_dodge(width=1) to position labels
      #       in center of each bar horizontally; use vjust=.95 to
      #       position labels at the top of each bar
      geom_text(aes(label=sprintf("%.1f%%", prop*100)), 
                position=position_dodge(width=1), 
                vjust=.95,
                fontface="bold",
                color="white")
    Side-by-side bar chart (% within group)

    Figure 2.8: Side-by-side bar chart (% within group)

    # NOTE: The code for this chart is nearly identical to the previous figure
    #       ONLY the changes have been commented on below
    airlinesat %>%
    group_by(gender, flight_type) %>%
      # NOTE: Use .groups="drop" to remove the grouping structure after
      #       summarising the data
      summarise(n=n(), .groups="drop") %>%  
      mutate(prop=n/sum(n)) %>%  
      ggplot(aes(x=gender, y=prop, fill=flight_type)) +
        geom_bar(position="dodge",  
                 stat="identity") + 
        scale_y_continuous(labels=scales::label_percent()) + 
        labs(x="Gender", y="Percent",   
             fill="Flight Type") +  
        geom_text(aes(label=sprintf("%.1f%%", prop*100)), 
                  position=position_dodge(width=1), 
                  vjust=.95,
                  fontface="bold",
                  color="white")
    Side-by-side bar chart (% of total)

    Figure 2.9: Side-by-side bar chart (% of total)

Video Tutorial: Bar Charts with ggplot::geom_bar (Part 4)

2.2.2.2 Column Charts

  • The standard column chart provides a sum of continuous variable y of each category of disrete variable x

    airlinesat %>%
      ggplot(aes(x=flight_type, y=nflights)) +
        geom_col()
    Standard column chart

    Figure 2.10: Standard column chart

  • To get a different summary statistic, such as mean, we can summarize the data and calculate the summary statistic for each category (and make the graph prettier)

    airlinesat %>%
      group_by(flight_type) %>%
      summarise(mean=mean(nflights)) %>%
      ggplot(aes(x=flight_type, y=mean, fill=flight_type)) + 
        geom_col(show.legend=FALSE) +
        labs(x="Flight Type", y="Mean Number of Flights") + 
        geom_text(aes(label=sprintf("%.2f", mean)), # Format label number
             vjust=.95, # Vertically adjust the labels
             fontface="bold",  # Bold typeface
             color="white") # Text color
    Column chart showing means

    Figure 2.11: Column chart showing means

Video Tutorial: Column Charts with ggplot::geom_col (Part 1)

2.2.2.2.1 Side-by-Side Column Chart
  • A side by side column chart can be used to show two discrete variables on the x-axis

    airlinesat %>%
    group_by(flight_type, flight_purpose) %>%  
    summarise(mean=mean(nflights), .groups="drop") %>%
    ggplot(aes(x=flight_type, y=mean, fill=flight_purpose)) +
      geom_col(position="dodge") + 
      labs(x="Flight Type", y="Mean Number of Flights",   
           fill="Flight Purpose") +  
      geom_text(aes(label=sprintf("%.2f", mean)), 
                position=position_dodge(width=1), 
                vjust=.95,
                fontface="bold",
                color="white")
    Side-by-side column chart

    Figure 2.12: Side-by-side column chart

Video Tutorial: Column Charts with ggplot::geom_col (Part 2)

2.2.3 Histogram

In ggplot, histograms are produced with the geom_histogram() geom, which produces a histogram of a single continuous variable.

  • By default, the y-axis is a count of observations in each “bin” of the x variable
    • A bin is a range of values of the continuous x variable
    • By default, ggplot will produce a histogram with 30 bins, and a message is produced to that effect unless the bins are changed manually
    airlinesat %>%
      ggplot(aes(x=age)) +
        geom_histogram()
    Standard histogram

    Figure 2.13: Standard histogram

2.2.3.1 Changing Bins

Histograms can look quite different based on the bins used. Bins can be changed in two ways: (1) number of bins; and (2) bin width

  • Changing the number of bins is done with the bins= option
    • For example: geom_histogram(bins=20)
  • Changing the bin width is done with the binwidth= option
    • For example; geom_histogram(binwidth=5)
  • Use the interactive histograms (Figure 2.14 and Figure 2.15 to see how the histograms change

Video Tutorial: Histograms with ggplot::geom_histogram (Part 1)

Figure 2.14: Interactive histogram for number of bins

Figure 2.15: Interactive histogram for bin width

2.2.3.2 Improving the Look

You may find the default histogram a little “blah” or tough to read. Just as the look of bar and column charts could be changed, so can the look of histograms

    airlinesat %>%
      ggplot(aes(x=age)) +
        geom_histogram(color="black",  # Adds red border around each bar
                       fill="tan") +  # Makes each bar blue
        labs(x="Age", y="Frequency")
Prettier histogram

Figure 2.16: Prettier histogram

Video Tutorial: Histograms with ggplot::geom_histogram (Part 2)

2.2.3.3 Other Options

  • Instead of the default count of observations, a density histogram can be created, where the sum of the area of the bars adds up to 1
  • Often, a normal curve is added

look of bar and column charts could be changed, so can the look of histograms

    airlinesat %>%
      ggplot(aes(x=age)) +
        geom_histogram(aes(y=..density..), # Request density instead of count
                       color="black",  # Adds red border around each bar
                       fill="tan") +  # Makes each bar blue
        stat_function(fun=function(x)   # Adds normal curve ovarlay
          dnorm(x, 
                mean=mean(airlinesat$age, na.rm=TRUE), # Mean of normal dist
                sd=sd(airlinesat$age, na.rm=TRUE))) +  # StdDev of normal dist
        labs(x="Age", y="Density")
Density histogram with normal curve

Figure 2.17: Density histogram with normal curve

Video Tutorial: Histograms with ggplot::geom_histogram (Part 3)

2.2.4 Box Plot

Box Plots are drawn with the geom_boxplot() geom, which by default creates a box plot for a continuous y variable, but for each level of a discrete x variable. In addition, the standard box plot does not contain “whiskers”.

  • To get a box plot for only the continuous y variable, use x="" as the discrete x variable

  • To add whiskers, include a staplewidth=1 within the geom_boxplot.

    airlinesat %>%
      ggplot(aes(x="", y=age)) +
        geom_boxplot(staplewidth = 1) +
        labs(x="",  # Remove x axis label
             y="Age")   # Make y axis label nicer
    Single box plot with whiskers

    Figure 2.18: Single box plot with whiskers

  • To make comparisons across a discrete x variable, replaces the x="" from before with x=VARIABLE

    airlinesat %>%
      ggplot(aes(x=flight_purpose, y=age)) +
        geom_boxplot(staplewidth = 1) +
        labs(x="Flight Purpose", y="Age")
    Multiple box plot

    Figure 2.19: Multiple box plot

Video Tutorial: Box Plots with ggplot::geom_boxplot

2.2.5 Scatterplot

  • Scatterplots are drawn with the geom_point() geom and are used to show the relationship between two continuous variables
    • Notice the warning given due to missing values (these warnings will be suppressed in other scatterplots below)
    airlinesat %>%
      ggplot(aes(x=age, y=s10)) + # s10 is satisfaction with condition of airplane
        geom_point()
    Standard scatterplot

    Figure 2.20: Standard scatterplot

2.2.5.1 Trendline

  • Scatterplots become more helpful when we add a trend line.
  • The most common trend line is a simple regression line, although others can be used.
    • Use geom_smooth(method="lm", se=FALSE) to add a linear trend line
    airlinesat %>%
      ggplot(aes(x=age, y=s10)) + # s10 is satisfaction with condition of airplane
        geom_point() + 
        geom_smooth(method="lm", se=FALSE) +  # Add trendline
        labs(x="Age", y="Satisfaction with Aircraft Condition")
    Scatterplot with trendline

    Figure 2.21: Scatterplot with trendline

Video Tutorial: Scatterplots with ggplot::geom_point (Part 1)

2.2.5.2 Other Options

  • The color, shape, and size of the points can be changed
    • In addition, they can vary by levels of a discrete variable
      • If a trend line is requested, separate trend lines will be provided for each level of the discrete variable
    airlinesat %>%
      ggplot(aes(x=age, y=s10, color=flight_type)) + 
        geom_point(shape=17) + 
        geom_smooth(method="lm", se=FALSE) +  # Add trendline
        labs(x="Age", y="Satisfaction with Aircraft Condition",
             color="Flight Type")
    Scatterplot with different colors for discrete variable

    Figure 2.22: Scatterplot with different colors for discrete variable

Video Tutorial: Scatterplots with ggplot::geom_point (Part 2)

2.3 Tables and Statistics

2.3.1 Frequency Table

2.3.1.1 Base R

  • The table(data$variable) function can produce a one-way frequency table
    • Wrapping the call to table with proportions will create the table with proportions (i.e., percent in each category)
    table(airlinesat$language)   # One way frequency table (counts)
    
    English  French  German 
        233      10     822 
    proportions(table(airlinesat$language))   # One way table of proportions
    
        English      French      German 
    0.218779343 0.009389671 0.771830986 
    Table 2.1: One-way frequency table using Base R

Video Tutorial: Frequency Tables with Base R

2.3.1.2 Package questionr

  • The freq() command from the package questionr produces nice one-way frequency tables (i.e., a frequency table for a single discrete variable)

    library(questionr)
    freq(airlinesat$language, # Provide discrete variable
         cum=TRUE,  # Add cumulative percent column
         total=TRUE)  # Add total row at bottom
               n     %  val%  %cum val%cum
    English  233  21.9  21.9  21.9    21.9
    French    10   0.9   0.9  22.8    22.8
    German   822  77.2  77.2 100.0   100.0
    Total   1065 100.0 100.0 100.0   100.0

    Table 2.2: One-way frequency table using questionr

Video Tutorial: Frequency Tables with questionr

2.3.2 Crosstabs

2.3.2.1 Base R

  • Base R does not do a great job of easily creating cross-tabs and testing for independent of the two variables
  • Using base R, a multistep process is required
    • Create the two-way frequency table using the table(rowvar, colvar) function and assign it to a separate object
      • Display the two-way freq table by just using the table name
    • Use the function proportions(tablename, margin) on the newly created object to get column, row, or total percentages
      • proportions(tablename) gives total percentages
      • proportions(tablename, 1) gives row percentages
      • proportions(tablename, 2) gives column percentages
    • Use the function chisq.test(tablename) on the newly created object to run the test of independence
    # Create two way table
    crosstab <- table(airlinesat$flight_purpose, # row Variable
                      airlinesat$gender)   # Column variable
    crosstab   # Display 2-way freq table
    
               female male
      Business     76  449
      Leisure     204  336
    proportions(crosstab, 2)  # Display column percentages
    
                  female      male
      Business 0.2714286 0.5719745
      Leisure  0.7285714 0.4280255
    chisq.test(crosstab)   # Run test of independence
    
        Pearson's Chi-squared test with Yates' continuity correction
    
    data:  crosstab
    X-squared = 73.386, df = 1, p-value < 2.2e-16
    Table 2.3: Cross-tabs using Base R

Video Tutorial: Cross-Tabs with Base R

2.3.2.2 Alternative Packages

The following packages are not availabe through the BGSU Virtual Computing lab, but can be installed if using R/RStudio on your own machine. These packages produce nicely formatted crosstabs.

2.3.2.2.1 Package sjPlot
  • Use the function tab_xtab(var.row=, var.col=, show.col.prc=TRUE) to get a standard crosstab with column percentages

    library(sjPlot)
    tab_xtab(var.row=airlinesat$flight_purpose,
             var.col=airlinesat$gender,
             show.col.prc=TRUE)

    flight_purpose

    gender

    Total

    female

    male

    Business

    76
    27.1 %

    449
    57.2 %

    525
    49.3 %

    Leisure

    204
    72.9 %

    336
    42.8 %

    540
    50.7 %

    Total

    280
    100 %

    785
    100 %

    1065
    100 %

    χ2=73.386 · df=1 · φ=0.265 · p=0.000

    Table 2.4: Cross-tab using sjPlot

Video Tutorial: Cross-Tabs with sjPlot

2.3.2.2.2 Package gmodels
  • FunctionCrossTable(rowvar, colvar, OPTIONS) has many options similar to SPSS

    library(gmodels)
    CrossTable(airlinesat$flight_purpose, airlinesat$gender,
               prop.r=FALSE,  # Exclude row percentages
               prop.t=FALSE,  # Exclude total percentages,
               prop.chisq=FALSE, # Exclude cell contribution to chi-sq
               digits=2,  # 2 digits after decimal point
               chisq=TRUE,  # Request test of independence
               format="SPSS")  # Request SPSS formatting
    
       Cell Contents
    |-------------------------|
    |                   Count |
    |          Column Percent |
    |-------------------------|
    
    Total Observations in Table:  1065 
    
                              | airlinesat$gender 
    airlinesat$flight_purpose |   female  |     male  | Row Total | 
    --------------------------|-----------|-----------|-----------|
                     Business |       76  |      449  |      525  | 
                              |    27.14% |    57.20% |           | 
    --------------------------|-----------|-----------|-----------|
                      Leisure |      204  |      336  |      540  | 
                              |    72.86% |    42.80% |           | 
    --------------------------|-----------|-----------|-----------|
                 Column Total |      280  |      785  |     1065  | 
                              |    26.29% |    73.71% |           | 
    --------------------------|-----------|-----------|-----------|
    
    
    Statistics for All Table Factors
    
    
    Pearson's Chi-squared test 
    ------------------------------------------------------------
    Chi^2 =  74.58406     d.f. =  1     p =  5.811064e-18 
    
    Pearson's Chi-squared test with Yates' continuity correction 
    ------------------------------------------------------------
    Chi^2 =  73.38648     d.f. =  1     p =  1.065938e-17 
    
    
           Minimum expected frequency: 138.0282 

    Table 2.5: Cross-tab using gmodels

Video Tutorial: Cross-Tabs with gmodels

2.3.3 Measures of Centrality and Dispersion

2.3.3.1 Base R

  • Any individual summary statistic can be easily calculated using Base R with functions such as:

    • mean(x) for mean
    • sd(x) for standard deviation
    • quantile(x, .percentile) for percentiles (e.g., ‘.50’ would be median)
  • For summary statistics except for standard deviation, the summary(object) function can be used, where object can be a single variable or an entire data frame

    # Summary for a single variable
    summary(airlinesat$nflights)
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
       1.00    4.00    8.00   13.42   16.00  457.00 

    Table 2.6: Summary statistics in R Base, one variable

    # Subset of airlinesat
    summary(airlinesat[,c("age", "nflights", "s10")])
          age            nflights           s10        
     Min.   : 19.00   Min.   :  1.00   Min.   :  1.00  
     1st Qu.: 42.00   1st Qu.:  4.00   1st Qu.: 50.00  
     Median : 50.00   Median :  8.00   Median : 61.00  
     Mean   : 50.42   Mean   : 13.42   Mean   : 64.54  
     3rd Qu.: 58.00   3rd Qu.: 16.00   3rd Qu.: 83.00  
     Max.   :101.00   Max.   :457.00   Max.   :100.00  
                                       NA's   :40      

    Table 2.7: Summary statistics in R Base, multiple variables

  • Summary statistics for a continuous variable by different levels of a discrete variable can also be done in Base R using the tapply(continuous variable, discrete variable, function) function

    tapply(airlinesat$nflights,  # Continous variable to apply the function to
           airlinesat$flight_purpose, # Discrete, grouping variable
           summary)  # R function to apply by group
    $Business
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
       1.00    6.00   12.00   18.65   25.00  120.00 
    
    $Leisure
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      1.000   3.000   4.000   8.337   8.000 457.000 

    Table 2.8: Summary statistics in R Base, one variable, grouped

Video Tutorial: Summary Measures with Base R

2.3.3.2 Package dplyr

  • The dplyr package can also be used to manually create tables of summary statistics
    • One continuous variable
    airlinesat %>%
      summarise(mean=mean(age),
                sd=sd(age),
                q1=quantile(age, .25),
                median=quantile(age,.50),
                q3=quantile(age, .75))
          mean       sd q1 median q3
    1 50.41972 12.27464 42     50 58
    Table 2.9: Summary statistics using dplyr, one variable
    • Multiple continuous variables
    airlinesat %>%
      select(age, nflights, s10) %>%
      summary()
          age            nflights           s10        
     Min.   : 19.00   Min.   :  1.00   Min.   :  1.00  
     1st Qu.: 42.00   1st Qu.:  4.00   1st Qu.: 50.00  
     Median : 50.00   Median :  8.00   Median : 61.00  
     Mean   : 50.42   Mean   : 13.42   Mean   : 64.54  
     3rd Qu.: 58.00   3rd Qu.: 16.00   3rd Qu.: 83.00  
     Max.   :101.00   Max.   :457.00   Max.   :100.00  
                                       NA's   :40      
    Table 2.10: Summary statistics using dplyr, multiple variables
    • One continuous variable by a discrete/grouping variable
    airlinesat %>%
      group_by(flight_purpose) %>%
      summarise(mean=mean(age),
                sd=sd(age),
                q1=quantile(age, .25),
                median=quantile(age,.50),
                q3=quantile(age, .75))
    # A tibble: 2 × 6
      flight_purpose  mean    sd    q1 median    q3
      <fct>          <dbl> <dbl> <dbl>  <dbl> <dbl>
    1 Business        48.5  9.91    41     49    55
    2 Leisure         52.3 14.0     43     53    63
    Table 2.11: Summary statistics using dplyr, one variable, grouped

Video Tutorial: Summary Measures with dplyr

2.3.3.3 Package vtable

  • Package vtable produces very nice looking tables of summary statistics, but it isn’t available in BGSU’s Virtual Computer Lab.
  • Use function sumtable(data, vars="varname") to produce the table
    • One continuous variable
    library(vtable)
    sumtable(airlinesat, vars="nflights")
    Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
    nflights 1065 13 20 1 4 16 457
    Table 2.12: Summary statistics using vtable, one variable
    • Multiple continuous variables
    sumtable(airlinesat, 
             vars=c("nflights","age","s10"), # Use `c()` for multiple variables
             add.median=TRUE)  # Request median
    Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 50 Pctl. 75 Max
    nflights 1065 13 20 1 4 8 16 457
    age 1065 50 12 19 42 50 58 101
    s10 1025 65 21 1 50 61 83 100
    Table 2.13: Summary statistics using vtable, multiple variable
    • One or more continuous variables by a discrete/grouping variable
    sumtable(airlinesat, 
             vars=c("nflights","age","s10"), 
             add.median=TRUE, 
             group="flight_purpose")
    Variable N Mean SD Median N Mean SD Median
    flight_purpose Business Leisure
    nflights 525 19 18 12 540 8.3 21 4
    age 525 48 9.9 49 540 52 14 53
    s10 511 62 21 60 514 67 21 65
    Table 2.14: Summary statistics using vtable, multiple variables, grouped

Video Tutorial: Summary Measures with vtable

2.3.4 Correlation

Correlation provides a measure of the strength of association between two continuous variables.

2.3.4.1 Base R

  • Base R can easily provide the correlation and a test of the correlation using the cor.test(variable1, variable2) function
    • By default, it includes only observations that are non-missing in both variables
    cor.test(airlinesat$age, airlinesat$nflights)
    
        Pearson's product-moment correlation
    
    data:  airlinesat$age and airlinesat$nflights
    t = -3.7998, df = 1063, p-value = 0.000153
    alternative hypothesis: true correlation is not equal to 0
    95 percent confidence interval:
     -0.17461941 -0.05608231
    sample estimates:
          cor 
    -0.115763 
    Table 2.15: Correlation with test in Base R
  • Base R can also easily provide a correlation matrix of variables using the cor(data) function
    • By default, correlation will only be calculated for those pairs of variables that have no missing values
    • Use option use="pairwise.complete.obs" to exclude observations that are non-missing in both variables
    • However, Base R cannot produce a correlation matrix with p-values
    # First create data frame with only variables wanted
    mycorr <- airlinesat[,c("age", "nflights", "s10")]
    # Use function `round` to limit to 3 digits after decimal point
    round(cor(mycorr, use="pairwise.complete.obs"), 3)
                age nflights    s10
    age       1.000   -0.116  0.167
    nflights -0.116    1.000 -0.121
    s10       0.167   -0.121  1.000
    Table 2.16: Correlation matrix in Base R

Video Tutorial: Correlation with Base R

2.3.4.2 Package Hmisc

  • The function rcorr() from the package Hmisc, which is available in the BGSU Virtual Computing Lab, can be used to create correlation matrices also
    • The rcorr() function requires a matrix, so the data frame of variables must be coerced into a matrix first
    • By default, rcorr() produces three separate matrices: correlation, number of observations, and p-values
    • Separate tables can be requested
      • rcorr(as.matrix(dataframe))]]"r"]] provides the correlation matrix
      • rcorr(as.matrix(dataframe))]]"P"]] provides the matrix of p-values
    library(Hmisc)
    rcorr(as.matrix(mycorr))  # NOTE: 'mycorr' created in previous code
               age nflights   s10
    age       1.00    -0.12  0.17
    nflights -0.12     1.00 -0.12
    s10       0.17    -0.12  1.00
    
    n
              age nflights  s10
    age      1065     1065 1025
    nflights 1065     1065 1025
    s10      1025     1025 1025
    
    P
             age   nflights s10  
    age            2e-04    0e+00
    nflights 2e-04          1e-04
    s10      0e+00 1e-04         
    Table 2.17: Correlation matrix using Hmisc
    # Use 'round()' function to limit digits in output
    round(rcorr(as.matrix(mycorr))[["r"]],4)
    round(rcorr(as.matrix(mycorr))[["P"]],5)
                 age nflights     s10
    age       1.0000  -0.1158  0.1671
    nflights -0.1158   1.0000 -0.1206
    s10       0.1671  -0.1206  1.0000
                 age nflights     s10
    age           NA  0.00015 0.00000
    nflights 0.00015       NA 0.00011
    s10      0.00000  0.00011      NA
    Table 2.18: Separate correlation matrix output using Hmisc

Video Tutorial: Correlation with Hmisc

2.3.4.3 Package sjPlot

  • The function tab_corr() from the sjPlot package produces very nice correlation matrices
    • sjPlot is not available in BGSU’s Virtual Computing Lab
    library(sjPlot)
    tab_corr(mycorr,   # Data frame of variables to use; created earlier
             na.deletion = "pairwise",  # Delete obs if either variable is missing
             corr.method = "pearson",  # Choose Pearson correlation coefficient
             show.p = TRUE,  # Show asterisks for significant correlations
             digits = 3,  # Show three decimal points
             triangle = "lower",  # Show only lower triangle
             fade.ns=FALSE)  # Do not fade insignficant correlations)
      age nflights s10
    age      
    nflights -0.116***    
    s10 0.167*** -0.121***  
    Computed correlation used pearson-method with pairwise-deletion.
    Table 2.19: Correlation matrix output using sjPlot

Video Tutorial: Correlation with sjPlot

2.3.4.4 Package GGally

  • The ggpairs() function from package GGally can produce a combination scatterplot and correlation matrix

    library(GGally)
    ggpairs(mycorr, # Data frame created earlier
            lower=list(continuous=wrap("smooth",    # Adds fit lines...
                                       method="lm", # Using linear regression...
                                       se=FALSE,    # Without CI bands
                                       color="blue")),  # Color dots
            diag=list(continuous="blankDiag"))      # Sets diagonals to be blank
    Combination scatterplot/correlation matrix using <i>GGally</i>

    Figure 2.23: Combination scatterplot/correlation matrix using GGally

Video Tutorial: Correlation with GGally